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Abstract—In this paper Brownian diffusion of spherical particles near a deformable fluid interface was examined
by considering interface deformations that were caused by impulsive motions of the Brownian particles. First, the
velocity fields were constructed in terms of eigenfunctions on the bipolar coordinate system which facilitated the
separation of variables. Then, the rate of interface deformation was determined to calculate the force acting on a
Brownian sphere due to the interface relaxation back toward a flat configuration. In addition, the covariance function
of velocity correlation was determined by solving the Langevin equation which included the effects of the interface
relaxation. Finally, the diffusion coefficient of spherical particles was evaluated by utilizing the Einstein-Smoluchowski
relation in conjunction with the particle mobility calculated in the presence of a deforming interface.
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INTRODUCTION

In this paper, Brownian motion of spherical particles near a
deformable fluid-fluid interface is examined. Nearly all previous
attempts to incorporate hydrodynamic interaction into Brownian
motion or diffusion near a fluid interface have relied on solutions
for a flat nondeforming interface [Brenner and Leal, 1982; Gotoh
and Kaneda, 1982]. However, even in the absence of Brownian
particles, the interface will fluctuate spontaneously around a flat
configuration due to the thermal agitation of the surrounding
fluids, and these random changes in the interface shape will pro-
duce random motions of Brownian particles in the vicinity of the
interface [Teletzke et al, 1982; Buff et al, 1965]. Further, the
motions induced in the two fluids by the impulsive motion of
a Brownian particle will generally lead to a normal stress differ-
ence across the interface which can only be balanced by capillary
forces if the interface deforms. In general, then, the interface
will exhibit a continously changing shape which depends on its
shape at earlier times [Lee and Leal, 1982; Berdan and Leal,
1982; Geller et al., 1986; Stoos and Leal, 1989]. This means that
an accurate theoretical description of the mechanism would have
to take into account the prior history of the particle motion as
it approaches the interface.

Although the magnitude of interface deformations will be small
compared to the particle size, corresponding to infinitesmal dis-
placements of the Brownian particle on the inertial time scale, the
displacement induced in the particle by the interface relaxation
back toward equilibrium (i.e., the flat configuration) may be of
the same order of magnitude as that caused initially by the ran-
dom impulse and this ‘rebound’ effect may have an appreciable
effect on the mean-square displacement (or the Brownian diffusiv-
ity) of the particle [Yang, 1995]. Thus, the interface effects on
the motion of Brownian particles are of two distinct types; first,
mechanical effects due to the spatially modified hydrodynamic
mobility and the interface relaxation back toward a flat configura-
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Fig. 1. Schematic sketch of the geometry of the problem when a sphere
approaches a deforming interface.

tion from the deformed shapes caused by the particle motion
and second, nonequilibrium thermodynamic effects due to the
fluctuating velocity fields caused by the random changes in the
interface shape.

In the present work, we examine the effect of interface defor-
mation; namely, the modification in mean square displacement
due to the ‘elastic rebound’ associated with the motion that is
induced in the particle as the interface relaxation back toward
equilibrium. In the analysis which follows the two bulk phase
fluids are assumed to occupy the domain x;>0 {fluid 1) and x;<0
(fluid 2) as depicted in Figure 1. A uniform bulk concentration
(i.e., number density) gradient is presumed to be maintained at
the constant value parallel to the bounding interface and to be
characterized by a macroscopic length scale L which is much lar-
ger than the radius of a Brownian sphere a (i.e., L:»a). This gives
rise to a steady flux of Brownian particles in a direction normal
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to the interface; one-dimensional description is therefore appro-
priate. Analysis of this normal mode of diffusion transport has been
motivated both by potential important applications in the fields
of aerosol and hydrosol deposition, and also as models for tran-
sient, nonequilibrium adsorption processes [O’'Neill and Ranger,
1983]. We consider here both the spatial modification of the hy-
drodynamic mobility due to hydrodynamic interaction effects, and
the effect of interface relaxation process on the Brownian diffu-
sion of the particle.

DISTURBANCE FLOW BY BROWNIAN MOTION
OF A SPHERE

We begin by considering a system which consists of two immi-
scible Newtonian fluids 1 and 2 that are separated by an interface,
as depicted in Figure 1. The surface of the interface is denoted
as IIs defined by

Ms=x;—nlx, )=0 ¢V

where x, Is a position vector representing points lying ir a plane
parallel to the undeformed, flat interface located at x;=0. Thus,
n(x,, t) in (2) denotes the interface displacement from the unde-
fromed, flat configuration. The motion of particles in the presence
of a fluid interface is, in general, nonlinear and depends on the
prior history of the particle motion and of the interface deforma-
tion. This nonlinear interface deformation problem cannot be sol-
ved exactly (except by numerical methods) but can be solved
approximately by linearizing the boundary conditions at the inter-
face in the case of sufficiently small deformations. It is obvious
that the difficulty arising from the time-dependence of the inter-
face shape can be resolved by considering limiting cases corre-
sponding to either very slow or very rapid particle motion. In parti-
cular, if the process of interface deformation is very slow relative
to the time scale characteristic of particle motion, then the inter-
face will not be able to deform significantly and remains arbitrarily
close to flat at all times. At the other end of the spectrum, if
the time scale for particle motion is very long compared to an
intrinsic time scale for interface deformation, the interface shape
at any instant will be the steady equilibrium form, in which the
normal component of velocities are always zero at the interface
[Lee and Leal, 1982; Berdan and Leal, 1982; Geller et ai., 1986].

Let us consider the consequences of small deformations caused
by rapid random motions of Brownian sphere normal to the inter-
face, since the random Brownian displacement, <IAT>, of
a sphere is only about 10 * a-10 * a in the very short fluctuation
time T, of the particle velocities. Here, the time scale t, is defined
by

__m
6nu,a

T ()
in which m is the mass of the particle and u, denotes the viscosity
of fluid 2, and v, is O(10 "* sec) for a Brownian particle in aqueous
medium at room temperature [ Russel, 19817]. In view of the infi-
nitesimal displacement corresponding to an impulse on the iner-
tial time scale t, characteristic of the motions of a Brownian parti-
cle, it can be assumed that the relevant hydrodynamic mobility
is that associated with a flat, but deforming interface. In this lim-
iting case, the equations governing the motion in each fluid j (=1,
2) are then the quasi-steady creeping motion equation and the
equation of continuity.
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Fig. 2. Bipolar coordinates ({, ¢, o) versus cylindrical coordinates (r,
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Here, | is the viscosity of fluid j. The boundary conditions to
be satisfied in dimensional form are the following:

u%—0 as x3—>+ o (6))

Since the deformation is sufficiently small, the boundary condi-
tions at the interface can be linearized as

u=y@ (6)
niut(l) = ntuiu) = j’?— (7)
nT,V= nT;® 8)

where n is the unit outward pointing normal vector from fluid
2 (ie. n=VIIy/|VIIsl) and T,” is the stress tensor in fluid j.
Since the equations of motion are linear and the pressure in
each fluid is harmonic, it is straightforward to derive a general
solution of Stokes' equation, plus the continuity equation. Further,
due to the presence of an interface, it is convenient to utilize
a bipolar coordinate system (£, ¢, o) depicted in Figure 2. In appli-
cation of the general solution to the present problem in which
a rigid sphere normally approaches an interface between two im-
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miscible viscous fluids, we shall identify the interface with the
coordinate surface 0=0 and the sphere surface with the coordi-
nate surface

6 =o0,= —cosh d/a) )]

Although the velocity components could be obtained in this bipo-
lar system directly, it is more convenient for the present purposes
to use the bipolar eigenfunctions to evaluate the velocity compo-
nents in the related cylindrical coordinates (r, ¢, x3), which is
sketched together with (&, ¢, o) in Figure 2. The bipolar and cylin-
drical coordinates are related via the transformation:

__ ¢ sinh¢
cosho — cosé

and r=——— sing (10)

cosho —cos€
in which ¢ is a constant which can be determined by the relative
location of the boundaries 6=0 and =0, [Happel and Brenner,
1983]. Each coefficient of the eigenfunction has been determined
by satisfying the boundary condition at the sphere surface [i.e.,
the condition of vanishing velocity at infinity, (5), together with
the conditions (7) and (8) at the interface]. Thus, the solution
pertains to the limiting case, in which the interface remains arbi-
trarily close to flat at all times albeit with wn;#0 due to the parti-
cle motion, and can be applied to the present study. It can be
easily shown that the stream function y for fluid 2 can be deter-
mined by eigenfunction expansions in bipolar coordinates and can
be expressed as

y=c*cosh c—cos & 3* i W.(6)Q,+ (cosE) an
n=1

Here, Q.. (cos) is the Gegenbauer polynomial of order (n+1)
and degree —1/2 and W, (o) is determined from the no-slip
boundary conditions on the sphere surface specified by (9). The
no-slip boundary condition can be expressed in terms of stream
function v, i.e., on a=0, [ = —cosh™'(d/a)]
_° v _ ot

2’ go 2o 02

Substituting (11) into the condition (12), we get the boundary
values of the function W,(c) as:

W e n 1/2)0q e (1 +3/2)a

(o0)= +1 {M — e 1

(c))=v2n(n+1) Pv— P (13)
= er— = 1/2), ~(n+372 R

W, (5)= —- 2 n(n+ et~V — g =032y ] (14

From this solution (11) in conjunction with (13) and (14), the nor-
mal component of velocity at the surface of interface can be found
which is the rate at which the surface is deforming. It follows
that the nonzero deformation rate can then be obtained by inte-
grating the kinematic condition (7).

We now consider the interface shape by calculating the velocity
at the interface from the solution of (11). The velocity compo-
nent

w=Y vz

(15
r or

can be evaluated readily, and utilizing the transformation rule

c% =— {sin‘ésinhca% +(1~- cos&coshc)%} (16)

J _{ 0 e fii
¢ =7(1~ cos cosho)——Wsmismhc—} )
%3 . oo ac
we have the maximum velocity component w,, corresponding
to the largest displacement n,... of the interface, as shown in Fi-

gure 1:

W = Qg—';“i = ~2,/3U T (- 1rHd) (18)
n=1

Here U is the magnitude of the particle velocity and H, is defined

by

@2n—1@2n+3)
V2n(n+1)
(1+M){@n+ 1)sinh’c,— (2n+ 1) sinh2oy+ 2} +2(1—A)e @0
4{cosh(n+ 1/2)5, — Asinh(n+ 1/2)c,}2+ (1 - A2(2n + 1)%sinh?o,

(19

H.(ow)=

in which A(=w/u,) is the viscosity ratio of the two fluids 1 and
2. The effects of hydrodynamic interaction between the particle
and the interface are contained in the complicated function H,(d)
(1e., H,—0 as d— ) in (19). Thus, in order to proceed analytically
to tllustrate the qualitative nature of these effects, we will expand
H, in terms of the small e(=a/d<1) assuming that the particle
is not closer than a few radii from the interface. The result is

wmlbf:'alrni‘:
ot
3 91-x 1, /9 1—>;e.,]
P (0 — e —_—— - 2 +O 4 0
1+xbg[1 8 1+4° 38+<~8 1+x)€ &) 20

The kinematic condition (20) provides a relationship between the
particle velocity and the maximum deformation rate, w,.. of the
interface. The maximum displacement 7, caused by a thermal
impulse can then be obtained by integrating (20).

3 ksT { 9 1-2 1, /9 1-ay l
—_— A S N (v 2
LN TR m PELT g e 3E (8 1+x)£,
+ 0O 2N

In (21), the viscous relaxation time

Im
6n leaCn

il

B (22)

is a function of the distance d between the sphere center and
the interface, and the drag ratio C;, (the drag divided by the Sto-
kes drag 6np.Ua) in this case is given by

=

C,,:Yég- (1+Nsinho, T H, 23)
nol

Again, utilizing an asymptotic expansion for H, in terms of small
¢ and

sinhoy= — 1 + le +0(e%) (24)
e 2
it can be shown that

Cn:l

9 1-A 9 1—A\, .
— [ A A RS :
3 1+)\e <\8 1+)\/’€ O (25)

The effect of the viscosity ratio, A, on the drag ratio in the pre-
sence of a deforming interface is clearly evident in (25) for the
limiting case in which the interface is instantaneously flat. In Fi-
gure 3, the drag ratio C,, is plotted as a function of the dimension-
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Fig. 3. Drag ratio Cp as a function of the dimensionless separation
distance d/a in the presence of a deforming interface.

less separation distance d/a for three values of A=0.1, 1.0 and
10. In particular, for A=1 the instantaneous values of the normal
component of velocity (wn) along the interface are identical to
the values which would exist along the same plane for sphere
motion in a single unbounded fluid domain. As a consequence,
the instantaneous fluid motion is unaffected by the interface and
the drag ratio is identically equal to Stokes’ drag, ie., Cp=1. For
values of A<1, on the other hand, the drag for a sphere near
a flat, deforming interface is decreased as the sphere moves closer
to the interface, while for A>1 the drag is increased under the
same conditions. These results are all a consequence of the fact
that the normal velocity given by (21) at the interface is smaller
for A>1 and larger for A<1 than it would be on the same plane
if the sphere were moving through single unbounded fluid. Thus,
the drag for a flat, but deforming interface is highly sensitive
to the viscosity ratio A between two fluids. The drag ratio of a
sphere particle moving toward a flat, non-deforming fluid interface
has been determined by Yang and Leal [1984], Fuentes et al
[1988], and Yang and Leal [1990]. The result is

C 1+% Zﬁ:}\ £+(% 2{3_:}\* >z£2+0(83) 26)
Thus, the drag in the presence of a non-déforming interface is
always larger than that in the absence of an interface, which is
independent of the viscosity ratio. This is due to the fact that
for a nondeforming interface the normal component of velocity
on the interface remains always zero, ie., un,=0

EFFECT OF INTERFACE RELAXATION

Since the energy imparted by the thermal noise is dissipated
very rapidly with respect to the averaging time scale At, the parti-
cle motion due to thermal agitation can be regarded as an impul-
sive fluctuation source for interface displacements. Recently, Yang
[1995] developed a general solution for the attenuation of capil-
lary waves on an interface. From his solution, the time variation
of wave amplitude can be written as

(D) = M€ g‘[cos\/l G+ \/C—C-Zsm\/ - ] 27
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Here, the time variable t is nondimensionalized with the time
scale tz

p1tpe
KAy + )

where the interface displacement decays exponentially. The other
dimensionless variable { is defined as

=ﬂ == -l _&l
c—tg' T~ wo v (Ap)gk+yk3 (29)

in which p; denotes the density of fluid j, g the gravity, y the
interfacial tension and k the wave number. Thus, w(=1t ™)) is
the natural frequency of capillary fluctuations and the dimension-
less parameter  represents the ratio of viscous forces to capillary
elastic response forces. Further, the hydrodynamic force on a
Brownian sphere immersed in the capillary wave can be deter-
mined from the generalized Faxen's law [ Yang, 1987]. The resul-
ting force acting on the sphere can be written as

Tr—

(28)

e
Fy=— 6“11230)011,,‘,1;*4*\;1——__—?; siny/1—Ct (30)

which clearly indicates that the force associated with the interface
oscillations decays also exponentially on the time same scale tg
as the amplitude of capillary wave.

Now, we consider the motions of a nearby Brownian particle
which occur as a consequence of the force (30) generated by inter-
face relaxation back toward a flat configuration. Since the external
forces and the macroscopic time-evolution of particle momentum
have to obey a linear law or a macroscopic rate equation of the
Langevin type, ie.,

_d£+5 IU_E @D

Solving the Langevin equation for motion of the particle under
the action of fluctuating force F; given by (30), we can readily

evaluate the velocity correlation function of the particle as
B,q MmOZe—-de
(Cwo— By + (1—Px?

-\/E[e”“”"‘—-e*"‘{COS\/l——Ty‘hL 7@—)';?—‘3-— sm\/r_lrl}]

Ru(d; ©)=<U(t) Ult+o)>=~—

m

(32)
in which
)7

=— 33

Ao B (33)

is the ratio of the time scale for the interface oscillation (ie.,
oY) to that of the viscous relaxation of the particle velocity.
Thus, the energy of the Brownian particle will be dissipated by
the irreversible frictional processes of both the exponential vis-
cous relaxation of the particle velocity on the time scale B(=m/6
rwaCp) which would be t,=m/(6mp;a) in an unbounded single
fluid and of the interface relaxation on the time scale tz. In Figure
4, the velocity correlation function Ri{d; t) is plotted as a function
of the dimensionless time difference t for {=0.2, 0.6, 1.0 and
14, A=1 and d/a=3. Yang [1995] demonstrated that the viscous
relaxation of the particle velocity exhibits the three typical modes
depending on the values of § (ie., oscillatory damping for {<1,
critical damping for {=1, and underdamping for {>1). It is ob-
vious from (21) that the interface displacement due to the impul-
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sive motion of a Brownian particle is decreased as the viscosity
ratio A becomes higher since the normal velocity at the interface
is smaller. As a consequence, the magnitude of the particle velo-
city induced by the interface relaxation back to the flat configura-
tion is decreased for the higher viscosity ratio A, which is illustrat-
ed in Figure 5 for {=02 and d/a=3.0. But, the particle mobility
is also decreased so that the initial impulsive displacement will
also be smaller. Perhaps the relative importance of the relaxation
process is not so highly decreased in the limit of high viscosity
ratio.

DIMENSIONLESS DIFFUSIVITY

0.4}

ot N NP

b~ -

1 I I 1 A
2 4 6 8 10 12
DIMENSIONLESS DISTANCE, d/a

|

|
0.2 L

0

Fig. 6. Dimensionless diffusion coefficient, D/{kzT/(6nu,a)!, as a func-
tion of the separation distance for ka=0.5.

It is important to realize that the solution of (32) contains the
Einstein-Smoluchowski theory for the Brownian diffusion process
as a limiting case when At»t,, and T, so that the non-Markovian
effects can be negligible in the averaging time At [Hauge and
Martin-Lof, 1973]. Under these circumstances, the Einstein-Smo-
luchoswki diffusion coefficient can be readily evaluated from the
definition

D= f :<U(t) Ut +t%)>dt° (34)

in which the integrand is the velocity correlation function given
by (32). Thus, the diffusivity is immediately

KT [ 3 0. 91-hn 1,
= — 1_ = e 2
6muaCy L 1+A° 8{1 8 1+1° 3¢
g 1_)‘>2 2 ] 4
2 e roe (35)

where the drag ratio Cp is given by (25). We now consider, in
detail, the condition At3»B and tx for validity of the Einstein-
Smoluchowski relation with the diffusion coefficient D of (35).
The time scales B and tx, on which the particle velocity and the
interface displacement relax exponentially, are approximately de-
termined as

m
B:O(‘Cp):O(\zil; j (36)
_nfPte
w=0[ B2 @7

Thus, we can certainly choose an averaging time scale At which
is much smaller than the observation time interval [ =0(1 sec)]
but still very large compared to § and t, which are O(~10 *
sec) in usual systems of Brownian particles in water.

In Figure 6, the diffusion coefficient D given in (35) is illustrat-
ed as a function of the separation distance d between the interface
and the sphere center for viscosity ratios A=10.0, 0.5, 1.0, 5.0 and
10.0. As is obvious from (35), the diffusion coefficient 1s either
increased or decreased by the presence of an interface depending
on the viscosity ratio A and the particle position relative to the

Korean J. Ch. E.(Vol. 12, No. 4)
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interface. For A=1, although drag ratio C; is unchanged by the
nearly flat, deforming interface, the displacement induced in the
particle by the interface relaxation back toward equilibrium is
increased as the particle moves closer to the interface. As a con-
sequence, the diffusion coefficient, which approaches kzT/(6np.a)
as d—>«, is decreased as the separation distance becomes smaller.
For values of A<1, on the other hand, the diffusion coefficient
is greater than it would be in a single unbounded fluid for larger
separation distances due to the spatially modified drag ratio. How-
ever, for smaller separation distances, the dominant effect of the
interface relaxation again causes the diffusivity to decrease. When
the viscosity ratio is greater than one, the presence of an interface
yields very low mobility (i.e., higher drag) for the particle motion
and thus the diffusion coefficient is alwzys less than kyT/(6rp.a).

CONCLUSIONS

The motions of a Brownian sphere near a deformabie interface
have been examined by considering the ‘rebound effects’ arising
from the interface relaxation back toward a flat configuration. The
analysis leads to the following conclusions.

The effect of the viscosity ratio, A, on the drag ratio in the
presence of a deforming interface is quite different from that in
the presence of a non-deforming interface. For values of A<1,
the drag for a sphere near a deforming interface is decreased
as the sphere moves closer to the interface, while for A>1 the
drag is increased under the same conditions. On the other hand,
the drag in the presence of a non-deforming interface is always
larger than that in the absence of an interface, which is independ-
ent of the viscosity ratio.

The time variation of amplitude of the interface relaxation is
characterized on the time scale tx on which the force associated
with the interface oscillations decays exponentially. However, the
energy of the Brownian particle is dissipated by the irreversible
frictional processes of both the exponential viscous relaxation of
the particle velocity on the time scale B and of the interface rela-
xation on the time scale <.

The diffusion coefficient is decreased as the separation distance
between the sphere center and the interface becomes smaller.
For values of A<1, the diffusion coefficient is greater than it would
be in a single unbounded fluid for larger separation distances
due to the spatially modified drag. However, for smaller separa-
tion distances, the dominant effect of the interface relaxation again
causes the diffusivity to decrease. For A>1, a deforming interface
reduces the particle mobility and thus the diffusion coefficient
is always less than that in the absence of an interface.

NOMENCLATURE

a :particle radius

¢ :constant defined by (10)

Cp :drag ratio given by (23)

d :separation distance between the particle and the plane inter-
face

D :Brownian diffusivity

¥y :force induced by the interface fluctuations on the particle

g :gravity

H,{(o) : function defined by (19)

k  :magnitudes of the wave vector k for the capillary wave fluc-
tuations

ks :Boltzmann constant

September, 1995

m : particle mass

n :unit normal vector on the interface

p?® : pressure of fluid j

Q. +1: Gegenbauer polynomial of order n+1 and degree —1/2

Ry :velocity autocarrelation function

t :time

t*  :time at reference state

T?, T, : stress tensor of fluid j

T :absolute temperature

u? :velocity of fluid j

U :Brownian particle velocity

w :velocity component along the xs-axis

Waa © Maximum velocity component along the xz-axis on the inter-
face, gNme/ot

W.(o) : function defined by (13)

X, :position vector of a point placed on the interface

X3 :coordinate perpendicular to the plane interface

B :viscous relaxation time for the particle motion defined by
22

vy :interfacial tension

£ :small parameter, a/d

§  ulw

n interface displacement from the plane of ;=0

Nmar : Maximum interface displacement

A :viscosity ratio, pi/ue

Ao 1 T/B

W :viscosity of fluid j

IIs :shape function for the interface

p; :density of fluid j

t :dimeusionless time difference

T, :reciprocal of the natural frequency of the interface oscilla-
tion, wp™’

T, :viscous relaxation time for the particle motion with Stokes’
law

tr :viscous relaxation time scale for the interface fluctuation
vy :stream function of fluid 2 defined by (11)
wy :natural frequency of the interface oscillation

Symbols
Ap :density difference
|Ax|: particle displacement

Coordinates
(r, ¢, x3): cylindrical coordinates defined in Fig. 2
(& o, o) : bipolar coordinates defined in Fig. 2
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