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Abstract - In  this paper Brownian diffusion of spherical particles near a deformable fluid interface was examined 
by considering interface deformations that were caused by impulsive motions of the Brownian particles. First, the 
velocity fields were constructed in terms of eigenfunctions on the bipolar coordinate system which facilitated the 
separation of variables. Then, the rate of interface deformation was determined to calculate the force acting on a 
Brownian sphere due to the interface relaxation back toward a flat configuration. In addition, the covariance function 
of velocity correlation was determined by solving the Langevin equation which included the effects of the interface 
relaxation. Finally, the diffusion coefficient of spherical particles was evaluated by utilizing the Einstein-Smoluchowski 
relation in conjunction with the particle mobility calculated in the presence of a deforming interface. 

Key words: Brownian Motwn, Brownian Diffusivity, Interface Deformation, Velocity Autocorrelation, Particle Mobil- 
ity, Bipolar Coordinates 

INTRODUCTION 

In this paper, Brownian motion of spherical particles near a 
deformable fluid-fluid interface is examined. Nearly all previous 
attempts to incorporate hydrodynamic interaction into Brownian 
motion or diffusion near a fluid interface have relied on solutions 
for a flat nondeforming interface [Brenner and Leal, 1982; Gotoh 
and Kaneda, 1982]. However, even in the absence of Brownian 
particles, the interface will fluctuate spontaneously around a flat 
configuration due to the thermal agitation of the surrounding 
fluids, and these random changes in the interface shape will pro- 
duce random motions of Brownian particles in the vicinity of the 
interface [Teletzke et al., 1982; Buff et al., 1965]. Further, the 
motions induced in the two fluids by the impulsive motion of 
a Brownian particle will generally lead to a normal stress differ- 
ence across the interface which can only be balanced by capillary 
forces if the interface deforms. In general, then, the interface 
will exhibit a continously changing shape which depends on its 
shape at earlier times [Lee and Leal, 1982; Berdan and Leal, 
1982; Geller et al., 1986; Stoos and Leal, 1989]. This means that 
an accurate theoretical description of the mechanism would have 
to take into account the prior history of the particle motion as 
it approaches the interface. 

Although the magnitude of interface deformations will be small 
compared to the particle size, corresponding to infinitesmal dis- 
placements of the Brownian particle on the inertial time scale, the 
displacement induced in the particle by the interface relaxation 
back toward equilibrium (i.e., the flat configuration) may be of 
the same order of magnitude as that caused initially by the ran- 
dom impulse and this 'rebound' effect may have an appreciable 
effect on the mean-square displacement (or the Brov~nian diffusiv- 
ity) of the particle [Yang, 1995]. Thus, the interface effects on 
the motion of Brownian particles are of two distinct types; first, 
mechanical effects due to the spatially modified hydrodynamic 
mobility and the interface relaxation back toward a fiat configura- 
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Fig. 1. Schematic sketch of the geometry of the problem when a sphere 
approaches a deforming interface. 
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tion from the deformed shapes caused by the particle motion 
and second, nonequilibrium thermodynamic effects due to the 
fluctuating velocity fields caused by the random changes in the 
interface shape. 

In the present work, we examine the effect of interface defor- 
mation; namely, the modification in mean square displacement 
due to the 'elastic rebound' associated with the motion that is 
induced in the particle as the interface relaxation back toward 
equilibrium. In the analysis which follows the two bulk phase 
fluids are assumed to occupy the domain x:~>0 (fluid 1) and x:~<0 
(fluid 2) as depicted in Figure 1. A uniform bulk concentration 
(i.e., number density) gradient is presumed to be maintained at 
the constant value parallel to the bounding interface and to be 
characterized by a macroscopic length scale L which is much lar- 
ger than the radius of a Brownian sphere a (i.e., L>a).  This gives 
rise to a steady flux of Brownian particles in a direction normal 
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to the interface; one-dimensional description is therefore appro- 
priate. Analysis of this normal mode of diffusion transport has been 
motivated both by potential important applications in the fields 
of aerosol and hydrosol deposition, and also as models for tran- 
sient, nonequilibrium adsorption processes [O'Neill and Ranger, 
1983]. We consider here both the spatial modification of the hy- 
drodynamic mobility due to hydrodynamic interaction effects, and 
the effect of interface relaxation process on the Brownian diffu- 
sion of the particle. 

D I S T U R B A N C E  FLOW BY BROWNIAN MOTION 
OF A S P H E R E  

We begin by considering a system which consists of two immi- 
scible Newtonian fluids 1 and 2 that are separated by an interface, 
as depicted in Figure 1. The surface of the interface is denoted 
as Hs defined by 

Fls= x.~-n(x, t )=0  (1) 

where x~ is a position vector representing points lying in a plane 
parallel to the undeformed, flat interface located at x3=0. Thus, 
rl(x~, t) in (2) denotes the interface displacement from the unde- 
fromed, flat configuration. The motion of particles in the presence 
of a fluid interface is, in general, nonlinear and depends on the 
prior history of the particle motion and of the interface deforma- 
tion. This nonlinear interface deformation problem cannot be sol- 
ved exactly (except by numerical methods) but can be solved 
approximately by linearizing the boundary conditions at the inter- 
face in the case of sufficiently small deformations. It is obvious 
that the difficulty arising from the time-dependence of the inter- 
face shape can be resolved by considering limiting cases corre- 
sponding to either very slow or very rapid particle motion. In parti- 
cular, if the process of interface deformation is very slow relative 
to the time scale characteristic of particle motion, then the inter- 
face will not be able to deform significantly and remains arbitrarily 
close to flat at all times. At the other end of the spectrum, if 
the time scale for particle motion is very long compared to an 
intrinsic time scale for interface deformation, the interface shape 
at any instant will be the steady equilibrium form, in which the 
normal component of velocities are always zero at the interface 
[Lee and Leal, 1982; Berdan and Leal, 1982; Geller et aL, 1986]. 

Let us consider the consequences of small deformations caused 
by rapid random motions of Brownian sphere normal to the inter- 
face, since the random Brownian displacement, ,~ - ]Axl2>,  of 
a sphere is only about 10 z a-10 :~ a in the very short fluctuation 
time ~ of the particle velocities. Here, the time scale zp is defined 
by 

m 

~ -  6n~a~a (2) 

in which m is the mass of the particle and P2 denotes the viscosity 
of fluid 2, and ~ is O(10 9 sec) for a Brownian particle in aqueous 
medium at room temperature FRussel, 1981]. In view of the infi- 
nitesimal displacement corresponding to an impulse on the iner- 
tial time scale ~ characteristic of the motions of a Brownian parti- 
cle, it can be assumed that the relevant hydrodynamic mobility 
is that associated with a flat, but deforming interface. In this lim- 
iting case, the equations governing the motion in each fluid j (= 1, 
2) are then the quasi-steady creeping motion equation and the 
equation of continuity. 
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Fig. 2. Bipolar coordinates (~, ~, o) versus cylindrical coordinates (r, 
0, x~). 

Vp ~ = ~ajV2u ~ (3) 

V. u ~ = 0 (4) 

Here, ~1 is the viscosity of fluid j. The boundary conditions to 
be satisfied in dimensional form are the following: 

u~---~O as x3--,_+ oo (5) 

Since the deformation is sufficiently small, the boundary condi- 
tions at the interface can be linearized as 

ui CII = ui (2> (6) 

n,u/'~ = niu/~2> = 0rl (7) 
0t 

n~T,t (I~ = r~T/1 (2~ (8) 

where n is the unit outward pointing normal vector from fluid 

2 (i.e. n=VIIs/[VHsl) and Ta ~ is the stress tensor in fluid j. 
Since the equations of motion are linear and the pressure in 

each fluid is harmonic, it is straightforward to derive a general 
solution of Stokes' equation, plus the continuity equation. Further, 
due to the presence of an interface, it is convenient to utilize 
a bipolar coordinate system (~, 0, o) depicted in Figure 2. In appli- 
cation of the general solution to the present problem in which 
a rigid sphere normally approaches an interface between two ira- 
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miscible viscous fluids, we shall identify the interface with the 
coordinate surface g = 0  and the sphere surface with the coordi- 
nate surface 

c = (5o = -- cosh 1(d/a) (9) 

Although the velocity components could be obtained in this bipo- 
lar system directly, it is more convenient for the present purposes 
to use the bipolar eigenfunctions to evaluate the velocity compo- 
nents in the related cylindrical coordinates (r, ~, x:0, which is 
sketched together with ({, $, ~) in Figure 2. The bipolar and cylin- 
drical coordinates are related via the transformation: 

c sinh{ c sin{ 
x3= coshc-cos~ and r =  coshr~-cos{ (10) 

in which c is a constant which can be determined by the relative 
location of the boundaries r~=0 and c~=c0 [Happel 8nd Brenner, 
1983]. Each coefficient of the eigenfunction has been determined 
by satisfying the boundary condition at the sphere surface [i.e., 
the condition uf vanishing velocity at infinity, (5), together with 
the conditions (7) and (8) at the interface]. Thus, the solution 
pertains to the limiting case, in which the interface remains arbi- 
trarily close to flat at all times albeit with u~n,g:0 due to the parti- 
cle motion, and can be applied to the present study. It can be 
easily shown that the stream function ~ for fluid 2 can be deter- 
mined by eigenfunction expansions in bipolar coordinates and can 
be expressed as 

W=c2(cosh c~-cos ~) g'~ ~2 W~(c)Q,, dcos{) (11) 
n = l  

Here, Q,. ~(co~) is the Gegenbauer polynomial of order (n+ 1) 
and degree - 1 / 2  and W~ (o) is determined from the no-slip 
boundary conditions on the sphere surface specified by (9). The 
no-slip boundary condition can be expressed in terms of stream 
function ~, i.e., on ~=~0 [ = -  cosh ~(d/a)] 

V O~ 0 r 
w= 2 '  O~ = r o c  (12) 

Substituting (11) into the condition (12), we get the boundary 
values of the function W.(c) as: 

[ - e  In 1,'2h~ 0 e - ( a  + 3/2k~ 0 

W'(~0 = X/2n(n + 1)[ ~ 2n+3  (13) 

W,'(c~,-,)= - ~ n(n+ 1)[e  ~" v~ '0 -e  (,,+3,'~)o0] (14) 

From this solution (11) in conjunction with (13) and (14), the nor- 
mal component of velocity at the surface of interface can be found 
which is the rate at which the surface is deforming. It follows 
that the nonzero deformation rate can then be obtained by inte- 
grating the kinematic condition (7). 

We now consider the interface shape by calculating the velocity 
at the interface from the solution of (11). The velocity compo- 
nent 

U 0~r w = - -  - -  (15) 
r Or 

can be evaluated readily, and utilizing the transformation rule 

0 0 0 
C~r= - {sin{sinho'~o + ( 1 -  cos~cosh~) 0~ } (16) 

c~- -= t (1-c~176176 t d x 3  t 0g . (17) 

we have the maximum velocity component w,.~ corresponding 
to the largest displacement q~.~ of the interface, as shown in Fi- 
gure 1: 

w ~ -  Oq,~ _ 2 v ~ U  ~. ( _  1)"H,(d) (18) 
Ot , :  

Here U is the magnitude of the particle velocity and H~ is defined 
by 

( 2 n -  1)(2n + 3) 
H.(~0) = 

v/2n(n + 1) 

(1 + k){(2n + 1)2sinhh~o- (2n + 1) sinh2oo + 2] + 2(1 - k)e (2, - 1~,~ 
4{cosh(n + 1/2)~,~ ksinh(n + 1/2)go} 2 + (1 -- k2)(2n + 1)2sinh2c~,~ 

(19) 

in which k(= ~1/~) is the viscosity ratio of the two fluids I and 
2. The effects of hydrodynamic interaction between the particle 
and the interface are contained in the complicated function Ho(d) 
(i.e., H.-~0 as d-%c) in (19). Thus, in order to proceed analytically 
to illustrate the qualitative nature of these effects, we will expand 
H. in terms of the small e (=a /d~ : l )  assuming that the particle 
is not closer than a few radii from the interface. The result is 

c)n . . . . . .  
W m a x  - -  

Ot 

3 Ue[1 9 1 - k  1 e + ( 9  1 - k ' ~  ~ )  ~ ] + O ( e )  (20) I+X. 8 1 + ~ e - 3  -e ,.8- 

The kinematic condition (20) provides a relationship between the 
particle velocity and the maximum deformation rate, w ...... of the 
interface. The maximum displacement q ...... caused by a thermal 
impulse can then he obtained by integrating (20). 

3 x ~ @  [[3e 1 9 1 k 1 ' 9  1 k ~ , 1 (  t 
q " ~ -  ( l+k )  8 l ~ + k e -  3 e e + ' 8  -1-+k' e 

+ O(e5 (2 !) 

In (21), the viscous relaxation time 

i n  
[3= (22) 

6np2aC~ 

is a function of the distance d between the sphere center and 
the interface, and the drag ratio C~) (the drag divided by the Sto- 
kes drag 6ngzUa) in this case is given by 

Ci,=k/~ ~ -  ( l+k)sinho.  E H,, (23) 
, 3  u I 

Again, utilizing an asymptotic expansion for H,, in terms of small 
a and 

sinho~, _ 1 + le+0(e~ ) (24) 
2 

it can be shown that 

1 L 
!~ " O e ~ C l ' = l  9 1 - L c + \ . 8 - 1 ~ k . ' 8 - ' 8  l + k  - ( ) (25) 

The effect of the viscosity ratio, k, on the drag ratio in the pre- 
sence of a deforming interface is clearly evident in (25) for the 
limiting case in which the interface is instantaneously flat. In Fi- 
gure 3, the drag ratio Cz) is plotted as a function of the dimension- 
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Fig. 3. Drag ratio Co as a function of the dimensionless separation 

distance d/a in the presence of a deforming interface. 

less separation distance d/a for three values of L=0.1, 1.0 and 
10. In particular, for 3.= 1 the instantaneous values of the normal 
component of velocity (u, n3 along the interface are identical to 
the values which would exist along the same plane for sphere 
motion in a single unbounded fluid domain. As a consequence, 
the instantaneous fluid motion is unaffected by the interface and 
the drag ratio is identically equal to Stokes' drag, i.e., Co= 1. For 
values of k<l ,  on the other hand, the drag for a sphere near 
a flat, deforming interface is decreased as the sphere moves closer 
to the interface, while for k > l  the drag is increased under the 
same conditions. These results are all a consequence of the fact 
that the normal velocity given by (21) at the interface is smaller 
for k > l  and larger for k < l  than it would be on the same plane 
if the sphere were moving through single unbounded fluid. Thus, 
the drag for a fiat, but deforming interface is highly sensitive 
to the viscosity ratio k between two fluids. The drag ratio of a 
sphere particle moving toward a flat, non-deforming fluid interface 
has been determined by Yang and Leal 1-1984], Fuen~es et al. 
[19883, and Yang and Leal [1990]. The result is 

9 2/3~L ~ ( 9  2 / 3 + k ~ 2 2 .  ~,, 3, 
C v = l + 8  ~L- e• ~ ~ ]e• (26) 

Thus, the drag in the presence of a non-d~forming interface is 
always larger than that in the absence of an interface, which is 
independent of the viscosity ratio. This is due to the fact that 
for a nondeforming interface the normal component of velocity 
on the interface remains always zero, i.e., u,n~=0 

E F F E C T  OF I N T E R F A C E  RELAXATION 

Since the energy imparted by the thermal noise is dissipated 
very rapidly with respect to the averaging time scale At, ~he parti- 
cle motion due to thermal agitation can be regarded as an impul- 
sive fluctuation source for interface displacements. Recently, Yang 
[1995] developed a general solution for the attenuation of capil- 
lary waves on an interface. From his solution, the time variation 

of wave amplitude can be written as 

q(~)= q.,,~e e[cosv/1 - ~z + ~ s inv 1-~-Z--~] (27) 

Here, the time variable z is nondimensionalized with the time 
scale ~e 

P, + p2 (28) 
I:R = kZ(p 1 + g2) 

where the interface displacement decays exponentially. The other 
dimensionless variable ~ is defined as 

~==_~, ~t=O~o_,=V Pl+O2 
(Ap)gk + yk 3 (29) 

in which Pi denotes the density of fluid j, g the gravity, y the 
interracial tension and k the wave number. Thus, o.~0(=rj-') is 
the natural frequency of capillary fluctuations and the dimension- 
less parameter ~ represents the ratio of viscous forces to capillary 
elastic resPonse forces. Further, the hydrodynamic force on a 
Brownian sphere immersed in the capillary wave can be deter- 
mined from the generalized Faxen's law [Yang, 1987]. The resul- 
ting force acting on the sphere can be written as 

e-~  s i n ~ - ~  (30) F3 = - 6np2aCOo'q,~-kd 

which clearly indicates that the force associated with the interface 
oscillations decays also exponentially on the time same scale I:R 
as the amplitude of capillary wave. 

Now, we consider the motions of a nearby Brownian particle 
which occur as a consequence of the force (30) generated by inter- 
face relaxation back toward a fiat configuration. Since the external 
forces and the macroscopic time-evolution of particle momentum 
have to obey a linear law Or a macroscopic rate equation of the 

Langevin type, i.e., 

dU +[3 'U =F3 (31) 
dt m 

Solving the Langevin equation for motion of the particle under 
the action of fluctuating force F3 given by (30), we can readily 
evaluate the velocity correlation function of the particle as 

~3q,m6Oo2e --2~'~ 
Rc~d; z)=<U(t) U(t+~)>= (~_13)2+(l__qCkOo2 

(32) 

in which 

L~_=~ (33) 

is the ratio of the time scale for the interface oscillation (i.e., 
o~ -~) to that of the viscous relaxation of the particle velocity. 
Thus, the energy of the Brownian particle will be dissipated by 
the irreversible frictional processes of both the exponential vis- 
cous relaxation of the particle velocity on the time scale l~(=m/6 
np2aCg) which would be zp= m/(6np2a) in an unbounded single 
fluid and of the interface relaxation on the time scale ~R. In Figure 
4, the velocity correlation function Re<d; ~) is plntted as a function 
of the dimensionless time difference 1: for ~=:0.2, 0.6, 1.0 and 
1.4, L= 1 and d/a=3.  Yang [-1995] demonstrated that the viscous 
relaxation of the particle velocity exhibits the three typical modes 
depending on the values of ~ (i.e., oscillatory damping for ~j< 1, 
critical damping for ~=1, and underdamping h>r ~>1). It is ob- 
vious from (21) that the interface displacement clue to the impul- 
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sive motion of a Brownian particle is decreased as the  viscosity 
ratio k becomes higher  since the normal  velocity at the  interface 
is smaller. As a consequence,  the  magni tude  of the  particle veh> 

city induced by the  interface relaxation back to the  flat configura- 
tion is decreased  for the  h igher  viscosity ratio k, which is illustrat- 
ed in Figure 5 for {=0 .2  and d / a=3 .0 .  But, the  particle mobilir.y 
is also decreased so that  the initial impulsive displacement  will 
also be smaller. Perhaps  the relative importance of tl'Le relaxation 
process  is not so highly decreased  in the limit of high viscosity 

ratio. 
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It is impor tant  to realize that  the  solution of (32) contains the  
Einste in-Smoluchowski  theory  for the Brownian diffusion process  
as a limiting case when  At~.~c,.p and rn, so that  the non-Markovian 
effects can be negligible in the  averaging t ime At [Hauge  and 
Mart in-Ltf ,  19731. U n d e r  these  circumstances., the Einstein-Smo- 
luchoswki diffusion coefficient can be readily evaluated from the 
definition 

D = fo x <U(t)  U(t + t~ ~ (34) 

in which the  integrand is the velocity correlat ion function given 
by (32). Thus,  the  diffusivity is immediate ly  

kBT [ 1 -  3 k,l ( 9 1 - - k  1 . ,  
D =  6~p2aCD. ~ e  c~l 8 l + k C - - 3  -c" 

\ 8 ~l /~. J 

where  the  drag ratio C~ is given by (25). We now consider,  in 
detail, the  condition At:~13 and ~ for validity of the Einstein-  
Smoluchowski relat ion with the diffusion c(mfficient D of (35). 
The  time scales 13 and z~, on which the particle velocity and the 
interface displacement  relax exponentially,  are approximately de- 
t e rmined  as 

z~ = O( pj + P2 a~l (37) 
" P~+P2 .' 

Thus, we can certainly choose an averaging time scale At  which 
is much smaller  than the  observat ion t ime interval  [ ~ 0 ( 1  sec)~ 
but still very large compared to 13 and ~ which are O ( ~ 1 0  ~ 
sec) in usual sys tems of Brownian particles in water. 

In Figure 6, the  diffusion coefficient D given in (35) is illustrat- 
ed as a function of the separat ion distance d be tween  the interface 
and the sphere  center  for viscosity ratios X=:0.0, 0.5, 1.0, 5.0 and 
10.0. As is obvious from (35), the  diffusion coefficient is e i ther  
increased or decreased  by the  presence  of an interface depend ing  
on the viscosity ratio )v and the particle position relative to the 
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interface. For k=  1, although drag ratio Co is unchanged by the 
nearly flat, deforming interface, the displacement induced in the 
particle by the interface relaxation back toward equilibrium is 
increased as the particle moves closer to the interface. As a con- 
sequence, the diffusion coefficient, which approaches kBT/(6np._,a) 
as d-%e, is decreased as the separation distance becomes smaller. 
For values of k< l ,  on the other hand, the diffusion coefficient 
is greater than it would be in a single unbounded fluid for larger 
separation distances due to the spatially modified drag ratio. How- 
ever, for smaller separation distances, the dominant effect of the 
interface relaxation again causes the diffusivity to decrease. When 
the viscosity ratio is greater than one, the presence of an interface'. 
yields very low mobility (i.e., higher drag) for the particle motion 
and thus the diffusion coefficient is alweys less than k,~T/(6n~a2a). 

CONCLUSIONS 

The motions of a Brownian sphere near a deformable interface'. 
have been examined by considering the 'rebound effects' arising 
from the interface relaxation back toward a flat configuration. The 
analysis leads to the following conclusions. 

The effect of the viscosity ratio, k, on the drag ratio in the, 
presence of a deforming interface is quite different from that in 
the presence of a non-deforming interface. For values of k<l ,  
the drag for a sphere near a deforming interface is decreased 
as the sphere moves closer to the interface, while k,r )~>1 the 
drag is increased under the same conditions. On the other hand, 
the drag in the presence of a non-deforming interface is always; 
larger than that in the absence of an interface, which is independ- 
ent of the viscosity ratio. 

The time variation of amplitude of the interface relaxation is 
characterized on the time scale zu on which the force associated 
with the interface oscillations decays exponentially. However, the 
energy of the Brownian particle is dissipated by the irreversible 
frictional processes of both the exponential viscous relaxation of 
the particle velocity on the time scale 13 and of the interface rela- 
xation on the time scale ~;~. 

The diffusion coefficient is decreased as the separation distance, 
between the sphere center and the interface becomes smaller. 
For values of k< 1. the diffusion coefficient is greater than it would 
be in a single unbounded fluid for larger separation distances. 
due to the spatially modified drag. However, for smaller separa- 
tion distances, the dominant effect of the interface relaxation again 
causes the diffusivity to decrease. For k>l ,  a deforming interface 
reduces the particle mobility and thus the diffusion coefficient 
is always less than that in the absence of an interface. 

NOMENCLATURE 

a : particle radius 
c :constant defined by (10) 
Cv :drag ratio given by (23) 
d : separation distance between the particle and the plane inter- 

face 
D : Brownian diffusivity 
F~ :force induced by the interface fluctuations on the particle 
g : gravity 
H,(o) : function defined by (19) 
k : magnitudes of the wave vector k for the capillary wave fluc- 

tuations 
k,~ : Boltzmann constant 

m : particle mass 
n :unit normal vector on the interface 
pO :pressure of fluid j 
Q.+I: Gegenbauer polynomial of order n+  1 and degree - 1 / 2  
Ru :velocity autocorrelation function 
t : time 
t ~ : t ime at reference state 
I v~, % ~ :  stress tensor of fluid j 
T : absolute temperature 
u ~ :velocity of fluid j 
U :Brownian particle velocity 
w :velocity component along the xs-axis 
wm~ : maximum velocity component along the xa-axis on the inter- 

face, Orl~/Ot 
W.(o) : function defined 5y (13) 
x~ :position vector of a point placed on the interface 
xa :coordinate perpendicular to the plane interface 
[3 :viscous relaxation time for the particle motion defined by 

(22) 

y : interracial tension 
e :small parameter, a/d 

r/ :interface displacement from the plane of xa=0 
rl,,~ :maximum interface displacement 
)v :viscosity ratio, laa/la2 

~,,,, : ~,/13 
~ :viscosity of fluid j 
Hs :shape function for the interface 
pj :density of fluid j 

:dimensionless time difference 
~ : reciprocal of the natural frequency of the interface oscilla- 

tion, to0-' 
vp : viscous relaxation time for the particle motion with Stokes' 

law 
oh, :viscous relaxation time scale for the interface fluctuation 
~., :stream function of fluid 2 defined by (11) 
o~o :natural frequency of the interface oscillation 

Symbols  
AO : density difference 
IAxl: particle displacement 

Coord inate s  
(r, 0, x3) : cylindrical coordinates defined in Fig. 2 
(~, 0, ~) : bipolar coordinates defined in Fig. 2 
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